

All Aluminum Alloy Conductor (AAAC)

Yifang Product Group: AAAC

APPLICATION:

AAAC aluminum alloy conductors are extensively used for overhead distribution and transmission lines adjacent to ocean coastlines where there can be a problem of corrosion in the steel of an ACSR construction. The aluminum alloy conductors are used in place of single-layer ACSR conductors (i.e., #6 to #4/0 AWG)to reduce power losses in overhead distribution and transmission lines. The inductive effect of the ACSR steel core is eliminated, hence increasing the operating efficiency of the line.

STANDARD:

IEC 61089, BS 3242, BS EN 50182, DIN 48201, ASTM B 399, CSA C61089, AS 1531, NFC34-125, GB/T 1179

CONSTRUCTION:

AAAC is a high-strength aluminum alloy, concentric-lay-stranded conductor. It is similar in construction and appearance to the AAC all-aluminum conductor.

The AAAC conductor is manufactured in accordance with the requirements of the latest issue of ASTM B399. The AAAC conductor is manufactured from a heat-treated, magnesium-silicide high-strength 6201-T81 aluminum alloy.

The aluminum strands consist of a concentric stranded cable of 7, 19, 37 or more wires. The sizes and strands listed are common examples used in overhead lines. Metric (mm) sizes are also available.

CHARACTERISTIC:

Yifang Electric Group

Conductor type: Max. Cross-section 5000MCM/2500mm2

Max. Stranded number 127Nos

(We can produce according to our client's need and also provide technical data.)

DRAWING:

PARAMETER:

Code number	Area	Stranding Nos &Wire Diameter	Overall Diameter	Approx. Weight	Breaking Load	Max.DCResistanceat 20 C	Current Rating
	mm2	Nos/mm	mm	kg/km	kN	Ohm/km	A
16	18.4	7/1.83	5.49	50.4	5.43	1.7896	
25	28.8	7/2.29	6.86	78.7	9.49	1.1453	
40	46	7/2.89	8.68	125.9	13.58	0.7158	
63	72.5	7/3.63	10.9	198.3	21.39	0.4545	
100	115	19/2.78	13.9	316.3	33.95	0.2877	
125	144	19/3.10	15.5	395.4	42.44	0.2302	
160	184	19/3.51	17.6	506.1	54.32	0.1798	
200	230	19/3.93	19.6	632.7	67.91	0.1439	
250	288	19/4.39	22.0	790.8	84.88	0.1151	
315	363	37/3.53	24.7	998.9	106.95	0.0916	
400	460	37/3.98	27.9	1268.4	135.81	0.0721	
450	518	37/4.22	29.6	1426.9	152.79	0.0641	
500	575	37/4.45	31.2	1585.5	169.76	0.0577	
560	645	61/3.67	33.0	1778.4	190.14	0.0516	
630	725	61/3.89	35.0	2000.7	213.90	0.0458	
710	817	61/4.13	37.2	2254.8	241.07	0.0407	
800	921	61/4.37	39.5	2540.6	271.62	0.0361	
900	1036	91/3.81	41.8	2861.1	305.58	0.0321	
1000	1151	91/4.01	44.1	3179.0	339.53	0.0289	
1120	1289	91/4.25	46.7	3560.5	380.27	0.0258	
1250	1439	91/4.49	49.4	3973.7	424.41	0.0231	

